Tilings
CodingTheory.coset_intersection — Functioncoset_intersection(gen_idx_A::Vector{Int}, gen_idx_B::Vector{Int}, subgroup::GapObj, g::ReflectionGroup)Return the intersection of the cosets of g/subgroup wrt gen_idx_A and wrt gen_idx_B.
Notes
- This outputs a sparse matrix with rows indexing the
gen_idx_Acosets and columns indexing thegen_idx_Bcosets.
CodingTheory.cycle_tetrahedron_group — Methodcycle_tetrahedron_group(q::Int, r::Int, s::Int, t::Int)Return the "cycle" Coxeter group with high-order (>2) relations given by q, r, s, and t.
Corresponding Coxeter diagram:
q
o---o
t| |r
o---o
sCodingTheory.is_fixed_point_free — Methodis_fixed_point_free(subgroup::GapObj, g::ReflectionGroup)Return true if the subgroup of g is fixed-point free; otherwise false.
CodingTheory.is_k_colorable — Methodis_k_colorable(k::Int, gen_idx::Vector{GapObj}, translations::Vector{GapObj}, subgroup::GapObj, g::ReflectionGroup)Return true if the group elements corresponding to gen_idx in g/subgroup are k-colorable; otherwise false.
CodingTheory.is_orientable — Methodis_orientable(subgroup::GapObj, F::ReflectionGroup)Return true if the subgroup of F is is_orientable; otherwise false.
CodingTheory.q_r_s_group — Methodq_r_s_group(q::Int, r::Int, s::Int)Return the Coxeter group corresponding to Schläfli symbol {q, r, s}.
Corresponding Coxeter diagram:
o---o---o---o
q r sCodingTheory.r_s_group — Methodr_s_group(r::Int, s::Int)Return the Coxeter group corresponding to Schläfli symbol {r, s}.
Corresponding Coxeter diagram:
o---o---o
r sCodingTheory.star_tetrahedron_group — Methodstar_tetrahedron_group(q::Int, r::Int, s::Int)Return the "star" Coxeter group with higher-order (>2) relations given by q, r, and s.
Corresponding Coxeter diagram:
o
/ r
o---o
q \ s
oCodingTheory.tetrahedron_group — Methodtetrahedron_group(orders::Vector{Int})Return the tetrahedron group with relations given by orders.
CodingTheory.triangle_group — Methodtriangle_group(l::Int, m::Int, n::Int)Return the (l, m, n) triangle group.
Oscar.normal_subgroups — Methodnormal_subgroups(g::ReflectionGroup, max_index::Int)Return all normal subgroups of g with index up to max_index.