Tilings
CodingTheory.coset_intersection
— Functioncoset_intersection(gen_idx_A::Vector{Int}, gen_idx_B::Vector{Int}, subgroup::GapObj, g::ReflectionGroup)
Return the intersection of the cosets of g/subgroup
wrt gen_idx_A
and wrt gen_idx_B
.
Notes
- This outputs a sparse matrix with rows indexing the
gen_idx_A
cosets and columns indexing thegen_idx_B
cosets.
CodingTheory.cycle_tetrahedron_group
— Methodcycle_tetrahedron_group(q::Int, r::Int, s::Int, t::Int)
Return the "cycle" Coxeter group with high-order (>2) relations given by q
, r
, s
, and t
.
Corresponding Coxeter diagram:
q
o---o
t| |r
o---o
s
CodingTheory.is_fixed_point_free
— Methodis_fixed_point_free(subgroup::GapObj, g::ReflectionGroup)
Return true
if the subgroup
of g
is fixed-point free; otherwise false
.
CodingTheory.is_k_colorable
— Methodis_k_colorable(k::Int, gen_idx::Vector{GapObj}, translations::Vector{GapObj}, subgroup::GapObj, g::ReflectionGroup)
Return true
if the group elements corresponding to gen_idx
in g/subgroup
are k
-colorable; otherwise false
.
CodingTheory.is_orientable
— Methodis_orientable(subgroup::GapObj, F::ReflectionGroup)
Return true
if the subgroup
of F
is is_orientable; otherwise false
.
CodingTheory.q_r_s_group
— Methodq_r_s_group(q::Int, r::Int, s::Int)
Return the Coxeter group corresponding to Schläfli symbol {q
, r
, s
}.
Corresponding Coxeter diagram:
o---o---o---o
q r s
CodingTheory.r_s_group
— Methodr_s_group(r::Int, s::Int)
Return the Coxeter group corresponding to Schläfli symbol {r, s}
.
Corresponding Coxeter diagram:
o---o---o
r s
CodingTheory.star_tetrahedron_group
— Methodstar_tetrahedron_group(q::Int, r::Int, s::Int)
Return the "star" Coxeter group with higher-order (>2) relations given by q
, r
, and s
.
Corresponding Coxeter diagram:
o
/ r
o---o
q \ s
o
CodingTheory.tetrahedron_group
— Methodtetrahedron_group(orders::Vector{Int})
Return the tetrahedron group with relations given by orders
.
CodingTheory.triangle_group
— Methodtriangle_group(l::Int, m::Int, n::Int)
Return the (l
, m
, n
) triangle group.
Oscar.normal_subgroups
— Methodnormal_subgroups(g::ReflectionGroup, max_index::Int)
Return all normal subgroups of g
with index up to max_index
.